Diversification and Turnover

diversification rate = speciation rate — extinction rate

$$= \lambda - \mu$$

turnover =
$$\frac{\text{extinction rate}}{\text{speciation rate}} = \mu/\lambda$$

Lineages-through-time (LTT) plot

Paul O. Lewis ~ Phylogenetics, Spring 2024

Can extinction events be detected using phylogenies of extant taxa?

Harvey et al. (1994)

The pull of the present

Ancestral vs. total lineages

$$E[N(T)] = N_A(t) \times E[N(T-t)]$$

E[total number] = (no. ancestors at time t) × E[(no. descendants/ancestor)]

N(t) gives the number of lineages existing at time t (given that you start with 1 lineage). Some of these will have gone extinct by time T.

 $N_A(t)$ is the number of lineages that persist to the present (T). It is thus interesting to plot N(t) against $N_A(t)...$

Box 3 from: Ricklefs (2007)

The pull of the present

Box 3 from: Ricklefs (2007)

Pybus & Harvey's gamma

Yule vs. extinction

 $\gamma = 0.00$

Zero is the expected lower bound for gamma if speciation and extinction rates are both constant

Paul O. Lewis ~ Phylogenetics, Spring 2024

$$\gamma = 0.88$$

Pybus and Harvey (2000)

Yule vs. declining speciation rate

 $\gamma = 0.00$

 $\gamma = -0.46$

Negative values of gamma indicate a declining diversification rate through time

Gamma and adaptive radiations

Blackburnian warbler (Dendroica fusca) http://en.wikipedia.org/wiki/Dendroica

Pybus and Harvey (2000) computed gamma to be -4.171 (P = 0.0001) for this phylogeny of Dendroica warblers. Adaptive radiations such as this involve initially high speciation rates that decline once available niches are filled.

10

State-dependent Diversification

Are columbine spurs a key adaptation?

Aquilegia ecalcarata http://www.botanic.jp/plants-ha/fuodam.htm

Paul O. Lewis ~ Phylogenetics, Spring 2024

Fig. 4 from: Ree (2005)

Binary State Speciation and Extinction (BiSSE)

BiSSE analysis using diversitree

Paul O. Lewis ~ Phylogenetics, Spring 2024

***SSE models**

Binary State Speciation and Extinction (BiSSE) Maddison et al. (2007)

MultiState Speciation and Extinction (MuSSE) FitzJohn (2012)

Goldberg et al. (2011) Goldberg et al. (2011)

Quantitative State Speciation and Extinction (QuaSSE) FitzJohn (2010)

Hidden State Speciation and Extinction (HiSSE)

Beaulieu and O'Meara (2016)

BAMM (Bayesian Analysis of Macroevolutionary Mixtures)

Rabosky et al. (2013) Rabosky (2014) Rabosky et al. (2014) Shi and Rabosky (2015)

Moore et al. (2016): critique of BAMM Rabosky et al. (2017): convincing response

Bayesian Analysis of Macroevolutionary Mixtures (BAMM)

Fig. 9a in Rabosky (2014)

Bayesian Analysis of Macroevolutionary Mixtures (BAMM)

Fig. 9a in Rabosky (2014)