Correlated Evolution

definitely not
coincidence? independently evolving

- $0,0 \rightarrow 1,1$

Pagel (1994) Example

- Phylogeny of 8 primates
- Character \mathbf{X} is "mating system":

http://anthro.palomar.edu/primate/prim 4.htm
$0=$ mate with one male during estrus
$1=$ mate with multiple males during estrus
- Character \mathbf{Y} is "perineum swelling and reddening": $0=$ no swellings at estrus
1 = reddening and swelling at estrus

Independence (I) Model

- Same as asymmetric 2-state model
- α and β allowed to differ for the two characters (4 parameters total):

Independence (I) Model

Dependence (D) Model

Dependence (D) Model

This notation may be easier to understand

	uni, no	mi, red	multi, no

8 parameters total

Estrus Advertisement Example

- maximum log-likelihood under I model =-11.9
- maximum log-likelihood under D model $=-8.43$
- Likelihood ratio test statistic $=6.94$
- Small amount of data, so chi-squared distribution may be misleading
- $p>0.12$ (not significant) determined by parametric bootstrapping

Parametric bootstrapping

Character X:
Use independence model with estimated parameters a_{x}, β_{x} to simulate data on tree

Character Y:
Use independence model with estimated parameters a_{y}, β_{y} to simulate data on tree

Parametric bootstrapping

Character X: $\begin{array}{lllllllll} & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1\end{array}$
 Character Y: $\quad 0 \quad 1 \quad 1 \quad 0 \quad 0 \quad 1 \quad 0$

Maximize log-likelihood under I model: -10.49
Maximize log-likelihood under D model: -9.23
LRT statistic $=2.52$

This particular simulated dataset yielded a value less than the 6.94, need to do more replicates to build a histogram.

Is estrus advertisement more likely to evolve in the presence of a multi-male mating system?

Advertisement $(Y: 0 \rightarrow 1$) evolves in the evolutionary context of a monogamous mating system ($\mathrm{X}: 0 \rightarrow 0$)

1 -male
no swellings

Advertisement $(Y: 0 \rightarrow 1)$ evolves in the evolutionary context of a multi-male mating system $(X: 1 \rightarrow 1)$

Pagel-Meade 2006 rjMCMC correlated evolution model

Independent evolution of two characters is implied when all of the pairs of rates tied together by arrows are identical

$$
\begin{array}{llll}
0,0 & 0,1 & 1,0 & 1,1
\end{array}
$$

Here are three examples of rate matrices that imply independent character evolution

	0,0	0,1	1,0	1,1
0,0	---	a	a	0
0,1	a	---	0	a
1,0	a	0	---	a
1,1	0	\boldsymbol{a}	a	--

	0,0	0,1	1,0	1,1
0,0	---	a	a	0
0,1	b	---	0	a
1,0	b	0	---	a
1,1	0	b	b	---

	0,0	0,1	1,0	1,1
0,0	---	a	b	0
0,1	c	---	0	b
1,0	d	0	---	a
1,1	0	d	c	---

Pagel and Meade (2006)

Sampling models in BayesTraits

 plot was here estimated parameters (a, 00 (2) $00000<a$ one b) and q21 is fixed at 0

Theraare a total of (4140 distinct sublnodels of the full 8-parameter model.

This is an
example of the
"model strings"
saved in
BayesTraits'
output when
rjMCMC is run.

10 Z 01101
(1002000000 $\begin{array}{cccc}\text { particular } & & \mathrm{q} 12 & \mathrm{q} 13 \\ \text { rime } & 0,0 & 0,1 & 1,0\end{array}$

00Z00000
00 Z 00000
01234567
(BayesTraits software at http://www.evolution.reading.ac.uk/SoftwareMain.html)

