Discrete Morphology Models

Discrete morphological data

- Binary characters
- e.g. wings: present (1) or absent (0)
- e.g. venation: palmate (0) or pinnate (1)
- Multistate characters
- e.g. Number of incisors: 0, 1, 2, 3, 4, 5
- e.g. plants: hermaphroditic (0), gynomonoecious (1), or dioecious (2)
- Discretized continuous characters

Polygonella robusta is gynomonoecious (female flowers at tip, bisexual flowers at base)

Polygonella gracilis is dioecious (male individual on left, female on right)

- e.g. snout-vent length: short (0) or long (1)
- e.g. leaf shape: entire (0), lobed (1), deeply dissected (2)

Symmetric vs. Asymmetric Models

State Frequencies

...implies these equilibrium state frequencies:

In other words, if you know a and β, you also know π_{0} and π_{1}, and if you know π_{0} and π_{1}, you also know a and β

State Frequencies

Example: if rate of forward change $(a, 0 \rightarrow 1)$ is twice the rate of the reverse change $(\beta, 1 \rightarrow 0)$, then $a=2 \beta$ and we have...

$$
\begin{aligned}
& \pi_{0}=\frac{\beta}{\alpha+\beta}=\frac{1}{3} \\
& \pi_{1}=\frac{\alpha}{\alpha+\beta}=\frac{2}{3}
\end{aligned}
$$

In this case, fewer taxa are expected to have state 0 because of the greater tendency to change to 1

For the record...

Here are general formulas for the transition probabilities for the two-state model:

$$
\alpha=\beta
$$

$P_{00}(t)=\frac{\beta}{\alpha+\beta}+\frac{\alpha}{\alpha+\beta} e^{-(\alpha+\beta) t}$
$P_{01}(t)=\frac{\alpha}{\alpha+\beta}\left(1-e^{-(\alpha+\beta) t}\right)$

$$
\frac{1}{2}-\frac{1}{2} e^{-2 B t}
$$

$P_{10}(t)=\frac{\beta}{\alpha+\beta}\left(1-e^{-(\alpha+\beta) t}\right)$
$P_{11}(t)=\frac{\alpha}{\alpha+\beta}+\frac{\beta}{\alpha+\beta} e^{-(\alpha+\beta) t}$
Expected number of changes/site $=\frac{2 \alpha \beta t}{\alpha+\beta}=\frac{2 \beta^{2} t}{2 \beta}=\beta t$

Multistate models

- Can extend the symmetric model to multiple states
- 4-state version is identical to JC69 \leftarrow
- k-state version (where k is arbitrary) often called the Mk model ($\mathrm{M}=$ Markov)
- Can extend the asymmetric model also

Example of the model of evolution for a trait that adopts three states

From the BayesTraits manual:
http://www.evolution.reading.ac.uk/Files/BayesTraits-V1.0-Manual.pdf

Molecules vs. Morphology

These two A nucleotides represent the same state

$$
\begin{aligned}
& \text { A ACCAT } \\
& \text { B ACCAT } \\
& \text { C ATCAT } \\
& \text { D ATCAT } \\
& \text { E ATCGT }
\end{aligned}
$$

These two 0 states have nothing to do with each other

For morphology, makes no sense to compute empirical frequencies

What to do about state frequencies?

1. Don't even try to estimate state frequencies

Assume symmetric model; i.e. $\pi_{0}=\pi_{1}=0.5$
2. Estimate state frequencies separately for each character

Asymmetric model, but adds one parameter for every character
3. Use a mixture model

Use discrete beta distribution for frequency heterogeneity in the same way that the discrete gamma distribution is used for rate heterogeneity

Wright et al. 2015

Ascertainment Bias in Morphology Datasets

P._fimbriata
P._robusta
P._articulata
P._parksii
P._americana
P._myriophylla
P._macrophylla
P._polygama
P._gracilis
P._ciliata
P._basiramia

000000001101010110?01
000000001101010110001
100111010110000001100
000111012110000001000
100111010111100001000
100111010111000001000
110111012100000000000
110111013100100000000
101111013000001000110
001110112000001000110
001110112000001000110

No constant characters: no characters have same state for all taxa
No autapomorphies (i.e. only one taxon different) either
This represents an ascertainment bias: characters included are biased towards those that are parsimony informative.

Estimating branch lengths from discrete morphological data

What if you simulated data using a JC69 model and this model tree, then withheld all constant sites from PAUP* and asked it to estimate branch lengths under the same JC69 model?

Estimating branch lengths from discrete morphological data

Doing that produces results like this:

Edge	True length	ML estimate
A	0.2	241,750
B	0.05	0.4321
C	0.2	54.646
D	0.05	143,950
interior	0.05	0.022

Conditioning on variability

Probability of choosing an orange circle $=0.3$
Probability of choosing an orange circle given that the circle chosen is not gray $=0.3 / 0.6=1 / 2$

Poisson Example

Let \boldsymbol{y} be the number of accidents at an intersection/week. Lambda (λ) is the mean number of accidents/week.

$$
1=\frac{\lambda^{0} e^{-\lambda}}{0!}+\frac{\lambda^{1} e^{-\lambda}}{1!}+\frac{\lambda^{2} e^{-\lambda}}{2!}+\frac{\lambda^{3} e^{-}}{3!}
$$

These are the probabilities of $0,1,2,3, \ldots$, accidents/week given lambda (the infinite sum equals 1 , as it should).

Poisson Example

We should be using this as our total probability

Poisson Example

$$
1=\frac{\lambda^{1} e^{-\lambda}}{1!\frac{\left(1-e^{-\lambda}\right)}{\uparrow}}+\frac{\lambda^{2} e^{-\lambda}}{2!\left(\frac{\left.1-e^{-\lambda}\right)}{\uparrow}\right.}+\frac{\lambda^{3} e^{-\lambda}}{3!\left(\frac{\left.1-e^{-\lambda}\right)}{\uparrow}\right.}+
$$

Dividing each by the probability of at least one accident serves to inform the model that we've omitted the zeros

Conditioning helps!

The maximum likelihood estimate of λ (conditioning on values being greater than 0) is now 0.20512 , which is very close to the true value 0.2 and MLE based on all the data, 0.20064

Conditioning on variability

Probability of the data and character is variable

$$
\underset{\uparrow}{\operatorname{Pr}(D \mid V)}=\frac{\operatorname{Pr}(D, V)}{\widehat{\operatorname{Pr}(V)} \longleftarrow} \quad \begin{gathered}
\text { Probability that } \\
\text { character is variable }
\end{gathered}
$$

Probability of the data given character is variable

$1-\operatorname{Pr}($ character is constant)

How do we calculate $\operatorname{Pr}(\mathrm{C})$, the probability that a character is constant?

Calculating $\operatorname{Pr}(C)$

Estimating branch lengths from discrete morphological data

Here is the result of conditioning on variability:

Edge	True length	Naïve model	Corrected model
A	0.2	$241,750)$	0.206
B	0.05	0.4321	0.05
C	0.2	54.646	$0.206 \leftarrow$
D	0.05	143,950	0.051
interior	0.05	0.022	0.052
Much better!			

The Autapomorphy Trail

The Autapomorphy Trail

We know that wings is the homoplasy here, and both birds

Bird
 and bats evolved wings independently to allow them to fly.

Evidence for this independent adaptation lies in the trail of autapomorphies related to flight.

Lizard Monotreme

If convergence events are often associated with such a trail of autapomorphies, then using branch length information is helpful.

