## Deep coalescence and ILS

## Multispecies coalescent

"species"

"species"


Lineages from different species cannot coalesce until they are below the species "divider"

"species" 3
 event
"speciation" 」 event

## Shallow coalescence



## Deep coalescence




Once in a single population, any two lineages can coalesce...

## Deep coalescence



## The power of many genes



## *BEAST multispecies coalescent

Can estimate a species tree (S) given sequence data

https://www.beast2.org/2022/03/31/starbeast3.html

## *BEAST multispecies coalescent



Heled and Drummond (2010)

## *BEAST vs concatenation

Heled and Drummond (2010) compared their (*BEAST) method with concatenation, which fails when there is a lot of deep coalescence.

| From Table 2 | Topology <br> inside <br> $95 \%$ | Topology <br> 95\% size | Speciation <br> time inside <br> $95 \%$ | Speciation <br> time 95\% size |
| :---: | :---: | :---: | :---: | :---: |
| *BEAST | 97 | 11.9 | 96 | 1.5 |
| Concatenation | 9 | 1.4 | 0.7 | 5.3 |

## The anomaly zone



Anything can happen now!

## The Anomaly Zone





## The Anomaly Zone



1 way to get gene tree that matches species tree


2 ways to get symmetric gene tree that does not match species tree

Anomalous gene trees (AGTs) are gene trees that are more probable than the species tree

Degnan and Rosenberg (2006)

## Quartet-based species tree methods

## ASTRAL

For 4 taxa, anomalous gene trees only exist if rooted


These are all the same unrooted tree

ASTRAL takes advantage of this fact, building a
complete species tree from unrooted quartet subtrees nested within gene trees


ASTRAL is a supertree method that is statistically consistent in the face of substantial incomplete lineage sorting

Mirarab and Warnow (2015)

weight $(w)=$ number of gene trees in which quartet is found

$w=1$


$w=1$


## ASTRAL

## Total support for candidate species tree $=(4+6+6) / 2=8$




## SVDQuartets

Quartet method that consults the original sequences rather than depending on gene trees being correctly estimated

|  |  | AA | AC | AG | AT | CA | The flat matrix for any quartet tree stores counts of sites with patterns that match the quartet tree |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| flat $_{12 \mid 34}=$ | AA | $p_{\text {AAAA }}$ | $p_{\text {AAAC }}$ | $p_{\text {AAAG }}$ | $p_{\text {AAAT }}$ | $p_{A A C A}$ |  |
|  | AC | $p_{A C A A}$ | $p_{A C A C}$ | $p_{A C A G}$ | $p_{\text {ACAT }}$ | $p_{A C C A}$ |  |
|  | AG | $p_{\text {AGAA }}$ | $p_{A G A C}$ | $p_{A G A G}$ | $p_{\text {AGAT }}$ | $p_{A G C A}$ |  |
|  | AT | $p_{\text {ATAA }}$ | $p_{\text {ATAC }}$ | $p_{\text {ATAG }}$ | $p_{\text {ATAT }}$ | $p_{\text {ATCA }}$ |  |
|  | CA | $p_{\text {CAAA }}$ |  | $p_{\text {CAAG }}$ |  | $p_{C A C A}$ |  |

Chifman and Kubatko (2014)


Such symmetries reduce the rank of the flat matrix, which is a measure of how many columns (rows) are independent

## SVDQuartets

- Flat matrix should have rank
- 16 for quartets not in the species tree
- $\leq 10$ for quartets that are in the species tree under coalescent model
$-\leq 4$ for quartets that are in the true tree if true tree is common to all sites
- Evaluate all quartets (or a sample)
- Construct tree from quartets that have rank $\leq 10$
- To use version recently added to PAUP*:
- load concatenated data matrix
- use svdquartets command

