## Deep coalescence can cause conflict among gene trees

## Gene tree conflict





### What is coalescence?

# Coalescence

Some individuals leave no offspring to the next generation

Therefore (assuming population size remains constant over time), some offspring genes must have been **copied from the same parent** gene.

This merging (looking backwards in time) represents a **coalescence**.

All genes sampled must coalesce by some time in the past, and this history of coalescence is the **gene genealogy** (gene tree).



Kuhner 2009

### Understanding coalescence

↓ fene N=10 haploid individuals in a population today



### The coalescent process

N=10 haploid individuals in a population today



N=10 haploid individuals in previous generation Each *sampled* gene had a distinct ancestor, **no** coalescent events affected our *sampled* genes



Probability that all n=3 sampled genes had *distinct* parents



#### Probability of no coalescence in 1 generation given:

- *n* current sampled lineages (in this case n=3)
- *N* constant and somewhat large (in this case *N*=10)



#### Probability of no coalescence in 1 generation given:

- *n* current sampled lineages (in this case *n*=3)
- *N* constant and somewhat large (in this case *N*=10)

(n) = no. anys of choosing 2 out a things = n: Eno. ways of rearranging n thing  $\frac{2!}{(n-2)!} = \frac{3!}{(2)} = \frac{3!}{2! \cdot 1!} = \frac{3 \cdot 7 \cdot 1}{(7 + 16)} = \frac{1}{(2)} = \frac{3}{(2)} = \frac{3 \cdot 7 \cdot 1}{(7 + 16)} = \frac{1}{(2)} = \frac{1}{(2)} = \frac{3}{(2)} = \frac{1}{(2)} = \frac{1}$ マ! (ハーマ)! 2 pussi buttes ( 1055. 3.2.1 = 3! = N'-N



#### The coalescent process



Pr (no coalescence by gen. t) =  $(1 - p)^t$ where  $p = \left(\frac{\binom{n}{2}}{N}\right)$ 

#### The coalescent process







# Diploid vs haploid



# Theta

If time to coalescence is *t*, then **total path** is 2*t* 

Population size is *N*, but there are 2*N* genes if organism is **diploid** 

$$E[t] = 2N$$

Total time along path between two sampled genes in a diploid is thus **4***N* 

If substitution rate is  $\mu$ , expected number of substitutions is

t=22

etics, Spring 2024 
$$U = 410 \mu$$
  
 $fine \frac{multis}{fine} z fold multipliers$ 

1 77 ...

**>=**[

# Theta

Ø= 4Nem

Expected number of substitutions for one edge in a gene tree

Thus, estimated theta is twice the edge length (expected number of substitutions) as estimated on a gene tree

#### STOPPED HERE 2024-03-07

 $\overline{2}$ 

# Effective population size

The effective population size  $N_e$  is the size of a randomly mating population that would behave the same way as the population under study (with census size N)

- Obligate outcrossing:  $N_e > N$
- Fluctuation in population size:  $N_e$  < average N
- Biased sex ratios:  $N_e < N$
- Inbreeding:  $N_e < N$

Bottom line: we are always estimating N<sub>e</sub> rather than N





### Examples of coalescent trees



Paul O. Lewis ~ Phylogenetics, Spring 2024

exponential growth makes edge lengths more even