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Interval in which density > 0 is the support

1

The support of a 
probability distribution 
is the interval over 
which its probability 
density is greater than 
zero.


This distribution would 
not be an ideal prior for 
an edge length because 
the support does not 
include any value 
greater than 1.
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Prior Distributions

• Discrete uniform for topologies

• Beta for proportions (support [0,1])


– Uniform is common special case

• Gamma for edge lengths, rate ratios, and 

other parameters with support [0,∞)

– Exponential is common special case


• Lognormal is alternative to Gamma

• Dirichlet for state frequencies and GTR 

relative rates
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For topologies, a discrete Uniform distribution is 
common
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Gamma distribution

4

Gamma distributions 
are ideal for parameters 
that range from 0 to 
infinity (e.g. branch 
lengths)


a = shape

b = scale

mean = ab

variance = ab2


a = shape

r = rate

mean = a/r

variance = a/r2
𝜃

Gamma(0.1, 10)

shoots off to infinity 

as 𝜃 → 0 if a < 1

Exponential(1) 

= Gamma(1,1)

hits y-axis at 1/b 

if a = 1

Gamma(400, 0.01)
mode > 0 if a > 1

(These examples all use the shape,scale 
parameterization)
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Log-normal distribution

5

If 𝜃 is log-normal with parameters 
μ and σ...

𝜇

𝜎

...then log(𝜃) is normal with mean μ 
and standard deviation σ.

Important: μ and σ do not represent the mean and variance of 𝜃: they are the mean 
and variance of log(𝜃)!

p(𝜃) p(log(𝜃))

mode = µ

median = µ

mean = µ

variance = �2

mode = eµ�⇥2

median = eµ

mean = eµ+⇥2/2

variance = e2µ+⇥2
(e⇥2

� 1)

To choose μ and σ to yield a particular mean (m) and variance (v) for 𝜃, use these 
formulas: 

log(𝜃)𝜃

⑧ o

->O
means I

variance
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Beta distribution

6

Beta(10,10)

Beta(1,1)

Beta(1.2,2)

Beta(0.8,2)

Uniform(0,1)

mean

variance
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Flat prior:

a = b = c = d = 1

Informative prior:

a = b = c = d = 300

(stereo pairs)

Dirichlet distribution for 
nucleotide frequencies
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Is there information in data about 
nucleotide frequencies?

Prior

(stereo pairs)

Posterior

 1688 aligned nucleotide sites for 34 taxa

of
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Mending (prior) fences
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The choice of prior distributions can 
potentially turn a good model bad!

LRT, AIC and BIC all

say this is a great

model because it


 is able to attain

such a high 


maximum 

likelihood


score

But the prior never

allows the parameter 

out of this box, so in 

actuality the model


performs very poorly
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Marginal posterior distribution of rCT

fence here
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Beware induced priors
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Induced tree length prior

13

Prior placed on edge lengths induces a prior on tree length T

v1

v2

v3
v4

v5

Mean = 5/λ

Mean = 1/λ
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Edge length vs. tree length

Edge length prior, 
Exponential(10), has 

mean 0.1

For tree with 100 edges, the 
induced tree length prior, 

Gamma(100, 0.1), has mean 10
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Gamma-Dirichlet prior

15Rannala, Zhu, and Yang (2012)

Better to place a prior on T directly and place a separate 
prior on edge length proportions:

Dirichlet(c,c,cd,c,c)Gamma(a,λ)

v1

v2

v3
v4

v5

c = d = 1 corresponds to a flat prior on edge length proportions; all 
edge length proportions have the same probability density. 

Note: rate parameterization: mean T = a/λ
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Induced prior on splits

16

m taxa n taxa

number of rooted
trees with m taxa

number of rooted
trees with n taxa

number of unrooted trees with n+m taxa
Pr(split) =

m=2, n=8: Pr(split) = 0.0667
m=5, n=5: Pr(split) = 0.0001
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Running on empty
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What is the likelihood?

18

#NEXUS 

begin data; 
  Dimensions ntax=4 nchar=1; 
  Format datatype=dna missing=?; 
  matrix 
    taxon1 ? 
    taxon2 ? 
    taxon3 ? 
    taxon4 ? 
  ; 
end; 

O
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Running on empty

You can use the program Tracer to show the estimated density:

http://tree.bio.ed.ac.uk/software/tracer/

Solid line: prior density from MCMC output when there 
was no data


Dotted line: exponential(10) density for comparison
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Almost all Bayesian software allows you to ignore the data  
and thus explore the prior distribution
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Hierarchical models 

vs. 


Empirical Bayes

20



Paul O. Lewis ~ Phylogenetics, Spring 2024

A

A

A T

C

C

Prior: Exponential, mean=0.1

In a non-hierarchical model, all parameters 
are present in the likelihood function
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μ is a hyperparameter

governing the mean of

the edge length prior

Prior: Exponential, mean μ

Hierarchical models add hyperparameters 
not present in the likelihood function

e.g. Suchard, Weiss and Sinsheimer (2001)

hyperprior

During an MCMC analysis, μ will hover around a reasonable 
value, sparing you from having to decide what value is 

appropriate. You still have to specify a hyperprior, however.
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Empirical Bayes

Prior: Exponential, mean=MLE

23

uses data, hence empirical


