Interval in which density >0 is the support

0
0.0

Prior Distributions

- Discrete uniform for topologies
- Beta for proportions (support $(0,1\rangle)$ pinvar
- Uniform is common special case
- Gamma for edge lengths, rate ratios, and other parameters with support $([0, \infty) \leftarrow$
- Exponential is common special case
- Lognormal is alternative to Gamma
- Dirichlet for state frequencies and GTR relative rates

For topologies, a discrete Uniform distribution is common

$\frac{1}{15}$

 $\frac{1}{15}$

$\frac{1}{15}$

$\frac{1}{15}$

$\frac{1}{15}$

$\frac{1}{15}$

$\frac{1}{15}$

$\frac{1}{15}$

$\frac{1}{15}$

Log-normal distribution

If θ is log-normal with parameters
...then $\log (\theta)$ is normal with mean μ μ and

$$
\begin{aligned}
\text { mean } & =e^{\mu+\sigma^{2} / 2} \\
\text { variance } & =e^{2 \mu+\sigma^{2}}\left(e^{\sigma^{2}}-1\right) \\
\text { mode } & =e^{\mu-\sigma^{2}} \\
\text { median } & =e^{\mu}
\end{aligned}
$$

Important: μ arrd σ do not represent the mean and variance of θ : they are the mean and variance of $\log (\theta)$!
To choose μ and σ to yield a particular mean (m) and variance (v) for θ, use these formulas:

Beta distribution

$($ mean $)(1-$ mean $)$
$a+b+1$

Beta(1.2,2)

Dirichlet distribution for nucleotide frequencies

Flat prior:
 $a=b=c=d=1$

Informative, prior:

 $a=b=c=d=300$
Is there information in data about nucleotide freauencies?

Mending (prior) fences

The choice of prior distributions can potentially turn a good model bad!

Marginal posterior distribution of r_{CT}

Zwickl and Holder (2004)

Beware induced priors

Induced tree length prior

Prior placed on edge lengths induces a prior on tree length T

$$
\begin{array}{ll}
v_{i} \sim \operatorname{Exponential}(\lambda) & \stackrel{10}{ }) \text { Mean }=1 / \lambda \\
T \sim \operatorname{Gamma}\left(5, \frac{1}{10}\right) \longleftarrow .1 \\
T \sim \text { Mean }=5 / \lambda & .5
\end{array}
$$

Edge length vs. tree length

For tree with 100 edges, the induced tree length prior, Gamma(100, 0.1), has mean 10

Gamma-Dirichlet prior

Better to place a prior on T directly and place a separate prior on edge length proportions:

$c=d=1$ dorresponds to a flat prior on edge length proportions; all edge length proportions have the same probability density.

Induced prior on splits

$$
\operatorname{Pr}(\text { split })=\frac{\left[\begin{array}{c}
\text { number of rooted } \\
\text { trees with } m \text { taxa }
\end{array}\right]\left[\begin{array}{c}
135 \\
\text { number of rooted } \\
\text { trees with } n \text { taxa }
\end{array}\right]}{\frac{\text { number of unrooted trees with } n+m \text { taxa }}{m=2, n=8: \operatorname{Pr}(\text { split })=0.0667}} 202705
$$

taxa	anrooted	rosted
2	1	1
3	$1.3=3$	3
4	$3.5=15$	15
5	$15,7=105$	945
6	$105.9=945$	10395
7	$945.11=10395$	135135
8	$10395.13=135135$	2027025
9	$135135.15=2,027025$	

Running on empty

What is the likelihood?

\#NEXUS

begin data;
Dimensions ntax=4 nchar=1; Format datatype=dna missing=?; matrix

end;

Hierarchical models VS. Empirical Bayes

In a non-hierarchical model, all parameters are present in the likelihood function

Prior: Exponential, mean $=0.1$

Hierarchical models add hyperparameters not present in the likelihood function

During an MCMC analysis, μ will hover around a reasonable value, sparing you from having to decide what value is appropriate. You still have to specify a hyperprior, however.

Empirical Bayes

uses data, hence empirical

$$
\downarrow
$$

Prior: Exponential, mean=MLE

