Interval in which density > 0 is the **support**

Prior Distributions

- **Discrete uniform** for topologies
- Beta for proportions (support (0,1))

- Uniform is common special case

 Gamma for edge lengths, rate ratios, and other parameters with support [0,∞)

- Exponential is common special case

- Lognormal is alternative to Gamma
- Dirichlet for state frequencies and GTR relative rates

For **topologies**, a **discrete Uniform distribution** is common

Log-normal distribution

5

Paul O. Lewis ~ Phylogenetics, Spring 2024

Dirichlet distribution for nucleotide frequencies

Is there information in data about nucleotide frequencies?

Mending (prior) fences

The choice of prior distributions can potentially turn a good model bad!

parameter value

Marginal posterior distribution of $r_{\rm CT}$

Zwickl and Holder (2004)

Beware induced priors

Induced tree length prior

Prior placed on edge lengths induces a prior on tree length T $v_i \sim \text{Exponential}(\lambda) \leftarrow \text{Mean} = 1/\lambda$ $T \sim \text{Gamma}(5, \frac{1}{\lambda}) \leftarrow \text{Mean} = 5/\lambda$

Edge length vs. tree length

For tree with 100 edges, the induced tree length prior, Gamma(100, 0.1), has mean 10

Gamma-Dirichlet prior

Better to place a prior on *T* directly and place a separate prior on edge length *proportions*:

c = d = 1 corresponds to a **flat prior** on edge length proportions; all edge length proportions have the same probability density.

Rannala, Zhu, and Yang (2012)

hxa	mrost ed	rosted
2		1
3	t	3
Ч	13 = 3	15
5	3.5 = 15	105
	15,7=105	945
2	105.9 = 945	10345
r S	945.11 = 10395	135135
9	10395-13 = 135135	2027015
ן (ט	135135.15=2027025	

Running on empty

What is the likelihood?

```
#NEXUS
```

```
begin data;
Dimensions ntax=4 nchar=1;
Format datatype=dna missing=?;
matrix
taxon1 ??
taxon2 ??
taxon3 ??
;
end;
```


Hierarchical models vs. Empirical Bayes

In a non-hierarchical model, all parameters are present in the likelihood function

Prior: Exponential, mean=0.1

Hierarchical models add *hyperparameters* not present in the likelihood function

During an MCMC analysis, μ will hover around a reasonable value, sparing you from having to decide what value is appropriate. You still have to specify a hyperprior, however.

Empirical Bayes

