Bayes' rule

Pr(B,D) = 1/5 $P(B) P(D|B) = (\frac{3}{5})(\frac{1}{5}) = \frac{1}{5}$ $P(B) P(B|D) = (\frac{1}{5})(\frac{1}{5}) = \frac{1}{5}$ p(0) p(BID) = p(B) p(0|B)p(B|D) = p(B)p(0|B)Bayes' Rule

Bayes' rule (cont.)

$$Pr(B|D) = \frac{Pr(B)Pr(D|B)}{Pr(D)}$$

$$\rho(B|D) = \frac{Pr(D,B)}{Pr(D,B) + Pr(D,W)} \in Some and a constant of the marginal probability of being dotted to compute it, we marginalize over colors
$$\rho(\omega|D) = \frac{\rho(D, \omega)}{\rho(D,B) + \rho(\omega|D)} = \frac{\rho(D, \omega)}{\rho(D,B) + \rho(D,\omega)} = b$$$$

Bayes' rule (cont.)

Bayes' rule in statistics

Simplest paternity example

child's genotype: Aa

mother's genotype:

possible fathers

Possibilities	θ_1	θ_2	Row sum
Genotypes	AA	Aa	
Prior	-12	12	١
Likelihood	(12	
Likelihood × Prior	12	14	3
Posterior	2/3	13	1

Paul O. Lewis ~ Phylogenetics, Spring 2024

Likelihood vs. Probability

The prior can be your friend

Suppose further I **test positive** for the disease. How worried should I be?

It is very tempting to (mis)interpret the likelihood as a posterior probability and conclude "There is a 100% chance that I have the disease."

Bayes' rule: continuous case

If you had to guess...

Not knowing anything about my archery abilities, draw a curve representing your view of the chances of my arrow landing a distance *d* from the center of the target (if it helps, I'm standing 50 meters away from the target)

0.0

Paul O. Lewis ~ Phylogenetics, Spring 2024

distance in centimeters from target center

X

Case 1: assume I have talent

Markov chain Monte Carlo (MCMC)

For more complex problems, we might settle for a good approximation to the posterior distribution

MCMC robot's rules

(Actual) MCMC robot rules

