Bayes' rule

$$
\begin{aligned}
& \operatorname{Pr}(B, D)=1 / 5 \\
& P(B) P(D \mid B)=\left(\frac{8}{5}\right)\left(\frac{1}{3}\right)=\frac{1}{5} \\
& p(D) p(B \mid D)=\left(\frac{1}{5}\right)\left(\frac{E}{5}\right)=\frac{1}{5} \\
& p(D) P(B \mid D)=p(B) p(D \mid B) \\
& P(B \mid D)=\frac{p(B) p(D \mid B)}{P(D)} \\
& \text { Bayes; Rule }
\end{aligned}
$$

$\{$ total $\underset{\substack{\text { marginal } \\ \text { nconlifional }}}{ }$ Probability of "Dotted" (unconditional $\frac{1}{2}=3 / 10+2 / 10$

Bayes' rule (cont.)

$$
\begin{aligned}
\operatorname{Pr}(B \mid D) & =\frac{\operatorname{Pr}(B) \operatorname{Pr}(D \mid B)}{\operatorname{Pr}(D)} \\
\rho(B \mid D) & =\frac{\operatorname{Pr}(D, B)}{\operatorname{Pr}(D, B)+\operatorname{Pr}(D, W)}
\end{aligned}
$$

\leftarrow sum
over
$\operatorname{Pr}(D)$ is the marginal probability of being dotted To compute it, we marginalize over colors

$$
p(\omega \mid D)=\frac{p(D, \omega)}{p(D, B)+\sigma(D, \omega)}
$$

Paul O. Lewis ~ Phylogenetics, Spring 2024

$$
p(B \mid D)+p(w \mid D)=\frac{p(D, B)+p(D, w)}{p(D, B)+p(D, w)}=1
$$

Marginal (total) probabilities

$$
\begin{aligned}
& \text { B W }
\end{aligned}
$$

Bayes' rule (cont.)

$$
\begin{aligned}
& \operatorname{Pr}(B \mid D)=\frac{\operatorname{Pr}(B) \operatorname{Pr}(D \mid B)}{\operatorname{Pr}(D, B)+\operatorname{Pr}(D, W)} \\
& \quad=\frac{\operatorname{Pr}(B) \operatorname{Pr}(D \mid B)}{\frac{\operatorname{Pr}(B) \operatorname{Pr}(D \mid B)+\operatorname{Pr}(W) \operatorname{Pr}(D \mid W)}{P}} \\
& \quad=\frac{\operatorname{Pr}(B) \operatorname{Pr}(D \mid B)}{\sum_{\uparrow \in\{B, W\}} \operatorname{Pr}(\theta) \operatorname{Pr}(D \mid \theta)} \leftarrow
\end{aligned}
$$

Bayes' rule in statistics

Simplest paternity example

 child's genotype:Aa mother's genotype:@ possible fathers| Possibilities | $\left(\theta_{1}\right)$ | $\left(\theta_{2}\right)$ | Row sum |
| :---: | :---: | :---: | :---: |
| Genotypes | (AA) | Aà | -- |
| Prior | $\frac{1}{2}$ | $\frac{1}{2}$ | 1 |
| Likelihood | 1 | $\frac{1}{2}$ | - |
| Likelihood \times
 Prior | $\frac{1}{2}$ | $\frac{1}{4}$ | $\frac{3}{4}$ |
| Posterior | $\frac{2}{4}$ | $1 / 3$ | 1 |

Likelihood vs. Probability

The prior can be your friend

Suppose the test for araredisease has the following
is true and false positive probabilities:

Suppose further I test positive for the disease. How worried should I be?

It is very tempting to (mis)interpret the likelihood as a posterior probability and conclude "There is a 100% chance that I have the disease."

The prior can be your friend

Thus, the odds against having the disease are actually 10000 to 1!

Bayes' rule: continuous case

If you had to guess...

Not knowing anything about my archery abilities, draw a curve representing your view of the chances of my arrow landing a distance d from the center of the target (if it helps, I'm standing 50 meters away from the target)

Case 1: assume I have talent

Case 2: assume I have a talent for missing the target!

Case 3: assume I have no talent

Probability density

 0.8 curve

A probability density curve is scaled so that the value of this integral (i.e. the total area) equals 1.0

Usually there are many parameters...

A 2-parameter example
Prior probability
Likelihood density

Posterior probability density

An analysis of 100 sequences under the simplest model (JC69) requires (197) pranch length parameters. The denominator is a 197 -fold integral in this case! Now consider summing over all possible tree topologies!

It would thus be nice to avoid having to calculate the marginal probability of the data...

Markov chain Monte Carlo (MCMC)

For more complex problems, we might settle for a good approximation
to the posterior distribution

MCMC robot's rules

(Actual) MCMC robot rules

