Bootstrapping

Suppose you sequence the 18 r rRNA gene and estimate the tree.

What tree would you have estimated had you chosen a different gene to sequence?

Which parts of the tree (i.e. splits) would you expect to be present in trees estimated from genes that evolved in a way similar to the one you sampled?

Bootstrapping: first step

	1	2	3	4	5	6	7	\ldots	K
1	T	A	G	T	C	G	T	\ldots	A
2	T	C	A	T	C	G	T	\ldots	G
3	A	T	G	T	C	A	C	\ldots	G
4	A	T	A	T	C	G	C	\ldots	G

From the original data, estimate a tree using, say, maximum likelihood (could use parsimony or distance methods, however)

Bootstrapping: first replicate

	1	2	3	4	5	6	7	\ldots	k
weights	1	$\mathbb{2}$	0	0	1	3	1	\ldots	2
1	T	A	G	T	C	G	T	\ldots	A
2	T	C	A	T	C	G	T	\ldots	G
3	A	T	G	T	C	A	C	\ldots	G
4	A	T	A	T	C	G	C	\ldots	G

Sum of
weights equals k (i.e.,
each bootstrap dataset has same number of sites as the original)

From the bootstrap dataset, estimate the tree using the same method you used for the original dataset

Bootstrapping: second replicate

	1	2	3	4	5	6	7	\ldots	k		
weights	0	1	1	1	1	3	0	\ldots	0		
1	T	A	G	T	C	G	T	\ldots	A		
2	T	C	A	T	C	G	T	\ldots	G		
3	A	T	G	T	C	A	C	\ldots	G		
4	A	T	A	T	C	G	C	\ldots	G	\quad	Note that weights are different this time, reflecting the random sampling with replacement used to generate the weights
:---											

This time the tree that is estimated is different than the one estimated using the original dataset.

X Bootstrapping: 20 replicates

Freq

Note: usually at least 100 replicates are performed, and 500 is better

$$
\text { e.g. } 2 / 20 \text {, or } 10 \% \text {, have } 3 \text { and } 4 \text { together }
$$

IQ-TREE searching and ultrafast "bootstrap"

