AND means MULTIPLY

Using 2 dice, what is the probability of

$$
\begin{aligned}
& \text { (-) AND } \% \text { ? } \\
& \left(\frac{1}{6}\right) \quad\left(\frac{1}{6}\right)=\frac{1}{36}
\end{aligned}
$$

AND rule in phylogenetic

OR means ADD

Using one die, what is the probability of
 $$
\begin{aligned} & 0 \text { OR } \because: 8 \\ & \frac{1}{6}+\frac{1}{6}=\frac{1}{3} \end{aligned}
$$

Combining AND and OR

What is the probability that the sum of two dice is 7 ?

Using both AND and OR in phylogenetic

state combinations to sum across

Joint probabilities

Total probability of "Dotted"

Conditional probabilities

 $\operatorname{Pr}(\mathrm{B} \mid \mathrm{D})=\frac{2}{5}=0.4$
$\begin{aligned} & \text { Hide all solid marble } \\ & \text { (leaving } 5 \text { with dot) }\end{aligned}$

Of those left, 2 are black

Dependence Example

A = my normal route

$$
\begin{aligned}
& \operatorname{Pr}(\text { route }=\mathrm{A} \mid \text { normal })=0.95 \\
& \operatorname{Pr}(\text { route }=\mathrm{B} \mid \text { normal })=\underline{0.05} \\
& \hline .00
\end{aligned}
$$

$B=I$ go out of my way

Dependence Example

A = my normal route

> B = I go out of my way

How frequently do I take route B?
(assume $\operatorname{Pr}($ accident $)=0.1$)

$$
\begin{gathered}
p(\text { normal })=.9 \quad p(\text { accident })=.1 \\
p(B \mid \text { norma }))=.05 \quad p(B \mid \text { accident })=.95 \\
P(B)=\frac{p(B, \text { normal })}{}+\frac{p(B, \text { accident })}{P(B \mid \text { accident) placid. })} \\
P(B \mid \text { normal }) p(\text { normal })+P(.05)(.9)+(.95)(.1) \\
(. .045 \quad+\quad .095 \\
=.14 \quad
\end{gathered}
$$

GAAGT...GG
Likelihood of a single sequence
First 32 nucleotides of the ψn-globin gene of gorilla:

$$
\begin{aligned}
& L_{7 C}=\frac{1}{4} \frac{1}{4} \frac{1}{4} \cdots \frac{1}{4}=\left(\frac{1}{4}\right)^{32} \in J 669 \operatorname{modr} \\
& L_{F 81}=\pi_{G} \pi_{A} \pi_{A} \pi_{G} \cdots \pi_{G}=\frac{\pi_{A}^{12} \pi_{C}^{7} \pi_{G}^{7} \pi_{J}^{6}}{\operatorname{modl}} \\
& \log L_{F 81}=\frac{\left.12 \log \left(\pi_{A}\right)+7 \log \left(\pi_{C}\right)+7 \pi_{G}\right)+6 \log \left(\pi_{T}\right)}{12} \\
& \log (2 b)=\log (a)+\log (b) \quad \hat{\pi}_{A}=\frac{12}{32}
\end{aligned}
$$

Likelihood ratio test

Find maximum log under F81 (unconstrained) model:

$$
-43.1 \quad \pi_{A}=.375 \quad \pi_{c}=.219 \quad \pi_{c}=.219 \quad \pi_{5}=.187
$$

3 parameters estimated
Find maximum log under JC69 (constrained) model:

$$
-44.4 \quad \pi_{A}=\pi_{C}=\pi_{C}=\pi_{T}=1 / 4
$$

O parameters estimated

Likelihood ratio test
Calculate the likelihood ratio test statistic:

$$
\begin{aligned}
L R T & =-2\left(\log L_{J C}-\log L_{F 81}\right) \\
& =2.6
\end{aligned}
$$

Calculate the degrees of freedom:

$$
\begin{gathered}
\text { def. }=3-0=3 \\
\text { pchisq }(2.6,3)=.5425 \\
\text { statistic d.f. }
\end{gathered}
$$

$1-.5425$ $=.4575$

$$
\operatorname{qchisg}(.95,3)=7.814
$$

Likelihood of the simplest tree
First 32 nucleotides of the $\psi \eta$-globin gene of gorilla and orangutan: gorilla GGAGTCCTTGAGAAATAAACTGCACACACTGG orangutan GCACTCCTTGAGA ATAAACTGCACACACTGG

$$
\begin{aligned}
& V=3 \beta t \\
& \beta t=\frac{v}{3} \text { gorilla } \quad V A \quad G \quad \text { orangutan } \\
& L=\left[\left(\frac{1}{4}\right)\left(\frac{1}{4}+\frac{3}{4} e^{-4 \beta t}\right)\right]^{30}\left[\left(\frac{1}{4}\right)\left(\frac{1}{4}-\frac{1}{4} e^{-4 v / 3}\right)\right]^{2}
\end{aligned}
$$

Maximum likelihood estimation

First 32 nucleotides of the $\psi \eta$-globin gene of gorilla and orangutan: gorilla GAAGTCCTTGAGAAATAAACTGCACACACTGG orangutan GGACTCCTTGAGAAATAAACTGCACACACTGG

Evolutionary distances for several common models

Model	Expected no. substitutions: $v=\{r\} t$
JC69	$\nu=\{3 \beta\} t \in \beta t$
F81	$\nu=\left\{2 \beta\left(\pi_{R} \pi_{Y}+\pi_{A} \pi_{G}+\pi_{C} \pi_{T}\right)\right\} t$
K80	$\nu=\{\beta(\kappa+2)\} t \quad \beta t$ givèn $v, \mathrm{~K}$
HKY85	$\nu=\left\{2 \beta\left[\pi_{R} \pi_{Y}+\kappa\left(\pi_{A} \pi_{G}+\pi_{C} \pi_{T}\right)\right]\right\} t$

STOPPED HERE FEB. 6, 2024

Likelihood of an unrooted tree

$$
L=\frac{\frac{1}{4}\left(\frac{1}{4}+\frac{3}{4} e^{-\frac{4 v_{2}}{3}}\right)}{\left(\frac{1}{4}+\frac{3}{4} e^{-\frac{4 v_{1}}{3}}\right)\left(\frac{1}{4}-\frac{1}{4} e^{-\frac{4 v_{s}}{3}}\right)}\left(\frac{\frac{3}{4}}{}+\frac{4 v^{\frac{2}{3}}}{3}\right)\left(\frac{1}{4}-\frac{1}{4} e^{-\frac{4 v_{4}}{3}}\right)
$$

Brute force vs pruning algorithm

Felsenstein, J. 1981. Evolutionary trees from DNA sequences:

$$
\begin{aligned}
& L^{(k)}=L_{A B}^{(k)}+L_{A C}^{(k)}+L_{A C}^{(k)} L_{(k)}^{(k)} L_{T T}^{(k)} E^{k k^{\text {th }} \text { aite }} \\
& \log L^{(k)}=\log \left(L_{A B}^{(k)}+L_{A C}^{(k)} \cdots L_{T T}^{(a)}\right) \\
& \log L=\sum_{k=1}^{n} \log L^{(k)} \rightarrow \max L \underset{\substack{k \\
\text { maviminized } \\
\text { ovengh } \\
\text { mand }}}{ } \\
& L=L^{(1)} L^{(n)} L^{(3)} \cdots L^{(n)} \longleftarrow \prod_{k=1}^{n} L^{(k)} \\
& \log L=\log L^{(1)}+\log L^{(n)}+\cdots+\log L^{(n)} \longleftarrow \log
\end{aligned}
$$

